Advantages:

- Robust design with steel lifting unit
- High degree of protection and performance
- Self-locking trapezoidal screw

Typical areas of application:

- Industrial and construction engineering
- Vehicle and boat construction
- Forestry and agricultural technology
- Antenna and solar technology

Key figures:

- 230 VAC motor with thermal overload protection
- Up to 3500 N (dynamic)
- Up to $23 \mathrm{~mm} / \mathrm{sec}$
- 4500 N (static)
- Protection class IP54
- Ambient temperature $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
- Duty cycle 25 \%
- Overload clutch

Options:

- Potentiometer
- Adjustable limit switches
- Protection class IP65
- Customized end head

Drive data:

Ratio	Max. compression force dynamic	Max. pulling force dynamic	no load	Pull load	Possible stroke lengths	Max. current no load	Max. current full load
	$[\mathrm{N}]$	$[\mathrm{N}]$	$[\mathrm{mm} / \mathrm{s}]$	$[\mathrm{mm} / \mathrm{s}]$	$[\mathrm{mm}]$		
$10: 1$	1500	1500	23	17	$102-610$	1.8	$[\mathrm{~A}]$

Load diagrams:

Type code:

VIA5	-	230	-	20	-		A	-	100	-	ES.POT...
Type		Voltage		Ratio		Trapezoid	dal screw		Stroke length		Options
				10-10:1					100-102 mm		ES - Limit switches, adjustable
				20-20:1					150-153 mm		POT - Potentiometer I - Protection class IP65
				40-40:1					200-203 mm		
									250-254 mm		C1, C2, C3, C4, C5 - Position of the
									300-305 mm		housing bore
									450-457 mm		
									600-610 mm		

Dimensions (standard):

Dimensions (with limit switches and/or potentiometer):

Page 3

Setting the limit switches:

The extended end position is set via the upper cam disk, the retracted end position via the lower cam disk. If necessary, the end positions can be adjusted according to the following points.
To prevent damage to the plastic gear unit, the cam disks must be held in place while loosening or tightening the cam screw.

1. If the electric cylinder is attached, loosen the connections. Open the gearbox cover by loosening the 5 hexagon socket screws.
2. Make sure that the lifting tube does not rotate during motorized adjustment. Retract the electric cylinder electrically until the lower cam disk triggers the limit switch and the motor switches off. Turn the lifting rod manually to the desired retracted position.
3. Make sure that the lifting tube does not rotate during motorized adjustment. Extend the cylinder electrically until the desired position is reached. Adjust the upper cam disk until it triggers the limit switch.

Potentiometer:

The resistance of the tapping of the potentiometer changes as a function of the stroke length and the actuating position of the electric cylinder according to the table below:

Resistance between blue and white conductor	
Stroke [mm]	Resistance $(\mathrm{k} \Omega)$
100	$0.3-8.0$
150	$0.3-8.5$
200	$0.3-9.1$
300	$0.3-8.6$
450	$0.3-9.2$
600	$0.3-9.8$
Tolerance: $\pm \mathbf{0 . 3}(\mathbf{k} \Omega)$	

1. Blue conductor
2. Yellow conductor 3. White conductor

Attachment:

The lower fixing eye is fixed at an angle of 90° as standard.
It is possible to choose other angles (see left graphic) when ordering. Then add the corresponding designation C 1 to C 5 to the type code.

Furthermore, it is possible to order mounting clamps for pipe installation.

Attachment with mounting clamp:

Installation note:

The piston rod extends or retracts according to the pin assignment. If limit switches are integrated in the cylinder, the motor stops automatically in the respective end position.
If no limit switches are integrated, it must be ensured that the motor is switched off before reaching the respective mechanical end position. The motor must be protected against overcurrent by a fuse.

The load should always be centered in the direction of movement. Lateral forces should be avoided. They always shorten the service life and in extreme cases can interfere with the function or even destroy the device.
Ensure that the permissible load is not exceeded.

